Decoupled Logic Based Design for Implementation Low Power Memories by 8T SRAM
نویسندگان
چکیده
We present a novel half-select disturb free transistor SRAM cell. The cell is 6T based and utilizes decoupling logic. It employs gated inverter SRAM cells to decouple the column select read disturb scenario in half-selected columns which is one of the impediments to lowering cell voltage. Furthermore, “false read” before write operation, common to conventional 6T designs due to bit-select and wordline timing mismatch, is eliminated using this design. Two design styles are studied to account for the emerging needs of technology scaling as designs migrate from 90 to 65 nm PD/SOI technology nodes. Namely we focus on a 90 nm PD/SOI sense Amp based and 65 nm PD/SOI domino read based designs. For the sense Amp based design, read disturbs to the fully-selected cell can be further minimized by relying on a read-assist array architecture which enables discharging the bit-line (BL) capacitance to GND during a read operation. This together with the elimination of half-select disturbs enhance the overall array low voltage operability and hence reduce power consumption by 20%–30%. The domino read based SRAM design also exploits the proposed cell to enhance cell stability while reducing the overall power consumption more than 30% by relying on a dynamic dual supply technique in combination of cell design and peripheral circuitry. Because halfselected columns/cells are inherently protected by the proposed scheme, the dynamic supply “High” voltage is only applied to read selected columns/cells, while dynamic supply “Low” is employed in all other situations, thereby reducing the overall design power. A short bitline loading of 16 cells/BL is adopted to achieve high-performance low-power operation and lower bitline capacitance to improve tability. A newly developed fast Monte Carlo based statistical method is used to analyze such a unique cell, and 65 nm design simulations are carried out at 5 GHz. The feasibility of the cell and sensitivity to sense Amp timing has been proved by fabricating a 32 kb array in a 90-nm PD/SOI technology. Hardware experiments and simulation results show improvements of cell Vdd min over traditional 6T cells by more than 150 mV for 90 nm PD/SOI technology. Also experimental results based on fabricated 65 nm PD/SOI (1.6 kb/site 80 sites) hardware also asserts half-select disturb elimination and hence the ability to enable significant power savings. The performance and speed are shown to be comparable with the conventional 6T design.
منابع مشابه
Implementation Of Low Power SRAM By Using 8T Decoupled Logic
We present a novel half-select disturb free transistor SRAM cell. The cell is 6T based and utilizes decoupling logic. It employs gated inverter SRAM cells to decouple the column select read disturb scenario in half-selected columns which is one of the impediments to lowering cell voltage. Furthermore, “false read” before write operation, common to conventional 6T designs due to bit-select and w...
متن کاملA Column-decoupled 9t Cell for Low Power Differential and Domino-based Sram Design
Embedded memories are widely used in low power system on chip. Low power performance can optimized with process, circuit, architecture and system level codevelopment. Static random access memories consist of almost 90% of Very Large Scale Integration (VLSI). In this project, Low power design considerations are described in advanced technology nodes to address memory leakage and active power dis...
متن کاملLow Leakage Asynchronous PP based Single Ended 8T SRAM bit-cell at 45nm CMOS Technology
Low power SRAM memory designs has become challenging for portable device applications. Semiconductor/ VLSI industry growth has exponentially demanding low leakage power SRAM designs for high performance chips and microprocessors. To get optimized standard cell memory design for battery operated devices at deep sub micron CMOS technology, a low leakage Asynchronous 8T SRAM is proposed. In this p...
متن کاملDesign and Analysis of an 8T Read Decoupled Dual Port SRAM Cell for Low Power High Speed Applications
Speed, power consumption and area, are some of the most important factors of concern in modern day memory design. As we move towards Deep Sub-Micron Technologies, the problems of leakage current, noise and cell stability due to physical parameter variation becomes more pronounced. In this paper we have designed an 8T Read Decoupled Dual Port SRAM Cell with Dual Threshold Voltage and characteriz...
متن کاملDesign and Verification of Low Power SRAM using 8T SRAM Cell Approach
SRAM cell stability will be a primary concern for future technologies due to variability and decreasing power supply voltages. Advances in chip designing have made possible the design of chips at high integration and fast performance. Lowering power consumption and increasing noise margin have become two central topics in every state of SRAM designs.The Conventional 6T SRAM cell is very much pr...
متن کاملA Survey of Design Low Power Static Random Access Memory
In this field research paper explores the design and analysis of Static Random Access memories (SRAMs) that focuses on optimizing delay and power. CMOS SRAM cell consumes very less power and have less read and write time. Higher cell ratios will decrease the read and write time and improve stability. PMOS semiconductor unit with fewer dimensions reduces the ability consumption. During this pape...
متن کامل